Matheprojekte der Justus-Liebig-Universität Gießen für Grundschülerinnen und Grundschüler/Mathelexikon WiSe 16 17/Tauschaufgabe: Unterschied zwischen den Versionen

Aus ZUM Grundschullernportal
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 5: Zeile 5:
[[Datei:Tauschaufgabe Multiplikation.jpg|thumb|Tauschaufgabe Multiplikation]]
[[Datei:Tauschaufgabe Multiplikation.jpg|thumb|Tauschaufgabe Multiplikation]]


Bei Tauschaufgaben wird die Reihenfolge der Zahlen, mit denen man rechnet, verändert. <br />
Bei Tauschaufgaben wird die Reihenfolge der Zahlen, mit denen man rechnet, vertauscht. <br />


Das kann man bei der Addition und der Multiplikation machen. <br />
Das funktioniert bei der Addition und der Multiplikation. <br />




== Das Kommutativgesetz ==  
== Das Kommutativgesetz ==  
Die Tauschaufgabe basiert auf dem Kommutativgesetz. Dieses Gesetz besagt, dass beim Addieren und Multiplizieren die Reihenfolge, in der die Zahlen stehen, keinen Unterschied macht. Das Ergebnis bleibt also immer gleich, egal welche der Zahlen vorne steht. Rechnet man 4 + 7 lautet das Ergebnis 11. Tauscht man die beiden Zahlen und rechnet 7 + 4 verändert sich das Ergebnis nicht, es ist noch immer 11. Genau so funktioniert es auch bei der Multiplikation.<br />
Die Tauschaufgabe basiert auf dem Kommutativgesetz. Dieses Gesetz besagt, dass beim Addieren und Multiplizieren die Reihenfolge, in der die Zahlen stehen, keinen Unterschied macht. Das Ergebnis bleibt also immer gleich, egal welche der Zahlen vorne steht. Rechnet man 4 + 7 lautet das Ergebnis 11. Tauscht man die beiden Zahlen und rechnet 7 + 4 verändert sich das Ergebnis nicht, es ist noch immer 11. Auch bei der Multiplikation kann ich die beiden Zahlen, mit denen ich rechne, vertauschen. Das Ergebnis bleibt immer gleich.<br />






==Verwendung ==  
==Verwendung ==  
Tauschaufgaben kann man verwenden, um Rechnungen zu vereinfachen. Es ist zum Beispiel leichter, 2 * 17 zu rechnen, als 17 * 2.
Tauschaufgaben kann man verwenden, um Rechnungen zu vereinfachen. Es ist zum Beispiel leichter, 2 17 zu rechnen, als 17 2.

Version vom 1. Februar 2017, 11:14 Uhr

Tauschaufgabe

Tauschaufgabe Addition
Tauschaufgabe Multiplikation

Bei Tauschaufgaben wird die Reihenfolge der Zahlen, mit denen man rechnet, vertauscht.

Das funktioniert bei der Addition und der Multiplikation.


Das Kommutativgesetz

Die Tauschaufgabe basiert auf dem Kommutativgesetz. Dieses Gesetz besagt, dass beim Addieren und Multiplizieren die Reihenfolge, in der die Zahlen stehen, keinen Unterschied macht. Das Ergebnis bleibt also immer gleich, egal welche der Zahlen vorne steht. Rechnet man 4 + 7 lautet das Ergebnis 11. Tauscht man die beiden Zahlen und rechnet 7 + 4 verändert sich das Ergebnis nicht, es ist noch immer 11. Auch bei der Multiplikation kann ich die beiden Zahlen, mit denen ich rechne, vertauschen. Das Ergebnis bleibt immer gleich.


Verwendung

Tauschaufgaben kann man verwenden, um Rechnungen zu vereinfachen. Es ist zum Beispiel leichter, 2 • 17 zu rechnen, als 17 • 2.