Matheprojekte der Justus-Liebig-Universität Gießen für Grundschülerinnen und Grundschüler/Mathelexikon WiSe 16 17/Länge: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 50: | Zeile 50: | ||
| Durchmesser einer 10 Cent-Münze || 2cm | | Durchmesser einer 10 Cent-Münze || 2cm | ||
|- | |- | ||
| Länge | | Länge einer Streichholzschachtel || 5cm | ||
|- | |||
| Höhe einer Toilettenpapierrolle || 10cm | |||
|- | |- | ||
| äußerer, klappbarer Teil einer Schultafel || 1m | | äußerer, klappbarer Teil einer Schultafel || 1m |
Version vom 3. Februar 2017, 09:56 Uhr
Mit der Länge gibt man in der Mathematik die Entfernung zwischen zwei Punkten an. Es wird somit der direkte Weg zwischen den beiden Punkten ermittelt. Dies nennt man auch die Strecke.
Bestimmen der Länge
In der Mathematik kann man die Länge einer Strecke ausrechnen. Im Alltag bestimmt man die Länge aber oft durch Messen.
Zum Messen einer Länge gibt es verschiedene Werkzeuge: Lineal, Geodreieck, Zollstock, Maßband und noch viele mehr.
Will man zum Beispiel die Länge eines Stiftes bestimmen, dann legt man die Minenspitze genau bei der Null an und liest am Ende des Stiftes die Länge ab [1]. Hierfür eignet sich ein Lineal.
Zum Messen der Länge eines Tisches nutzt man besser einen Zollstock. Für größere Längen braucht man ein Maßband oder spezielle Messwerkzeuge. Sehr kurze Längen misst man beispielsweise mit einem Messschieber.
Längeneinheit
Es gibt viele verschiedene Möglichkeiten die Länge anzugeben. In Deutschland ist es üblich das metrische System[2] zu verwenden.
Typische Längeneinheiten sind:
Einheit | Symbol |
---|---|
Millimeter | mm |
Zentimeter | cm |
Meter | m |
Kilometer | km |
In Amerika werden Längen beispielsweise in inch (Zoll), foot (Fuß), yard (Schritt) und mile (Meile) angegeben. Dies nennt man das angloamerikanische Maßsystem.
Beispiele für Längen
Um sich Längen gut vorstellen zu können, ist es hilfreich, sich bestimmte Gegenstände und ihre Längen einzuprägen. Dies nennt man Stützpunktvorstellungen. Diese können helfen, sich Längen im Alltag vorzustellen.
Stützpunktvorstellung | zugehörige Länge |
---|---|
Breite eines Fingernagels | ~ 1cm |
Durchmesser einer 10 Cent-Münze | 2cm |
Länge einer Streichholzschachtel | 5cm |
Höhe einer Toilettenpapierrolle | 10cm |
äußerer, klappbarer Teil einer Schultafel | 1m |
Höhe einer Zimmertür | 2m |
ovale Laufbahn in einem Stadion | 400m |
Rechnen mit Längen
Mit Längen kann man auch rechnen. Dies geht jedoch nur, wenn diese Längen die gleiche Einheit besitzen. Ist dies nicht der Fall, dann kann man diese Einheiten umwandeln, sodass sie gleich sind. Dann kann man Längen addieren, subtrahieren, multiplizieren, vergleichen und der Größe nach ordnen.
In dieser Beispielrechnung werden zwei Längen miteinander addiert. Dies geschieht, indem die rote Strecke (6cm) an die blaue Strecke (4cm) angelegt wird. Hierdurch entsteht eine Strecke, die 10cm lang ist (grüne Strecke). Dies ist das Ergebnis der Addition. Bei einer Addition zweier Strecken werden also die Strecken hintereinandergelegt und zusammen gemessen.
Einzelnachweise
<references>
- ↑ Messen mit einem Lineal: http://www.kinderfunkkolleg-mathematik.de/lucy-fragt/messen
- ↑ Kinderfunkkolleg zur Entstehung des metrischen Systems: http://www.kinderfunkkolleg-mathematik.de/themen/wie-kam-es-zum-urmeter